ZU DEN KURSEN!

Höhere Mathematik 1: Analysis und Lineare Algebra - Zerlegung von Vektoren

x
JETZT WEITER LERNEN!

Weitere Lernvideos sowie zahlreiche Materialien für deine Prüfungsvorbereitung erwarten dich:
Komplettpaket für Ingenieurstudenten

High Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k


3018 Lerntexte mit den besten Erklärungen

444 weitere Lernvideos von unseren erfahrenen Dozenten
UsaNydame Sneakers Shoes Geox Trainers Taupe Light Women kXZOPiu
4846 Übungen zum Trainieren der Inhalte

7343 informative und einprägsame Abbildungen

Inhaltsverzeichnis

Vektor

Wie bereits in dem vorherigen Kapitel gezeigt, kann man mit dem Skalarprodukt den Winkel zwischen zwei Vektoren bestimmen.

In diesem Abschnitt soll gezeigt werden, wie man einen Vektor  $\vec{a}$  durch einen anderen Vektor  $\vec{b}$  und einem zu  $\vec{b}$  orthogonalen (senkrechten) Vektor  $\vec{x}$ darstellt.

Methode

Hier klicken zum Ausklappen

Die orthogonale Zerlegung eines Vektors $\vec{a}$ bezüglich eines Vektors $\vec{b}$ (auch als orthogonale Projektion bezeichnet) ist die Zerlegung des Vektors $\vec{a}$ in zwei Vektoren, einer parallel zu $\vec{b}$ und einer senkrecht zu $\vec{b}$. In Summe ergeben diese Vektoren den Vektor $\vec{a}$.

MerkeHigh Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k

Hier klicken zum Ausklappen

Das bedeutet: Der gegebene Vektor  $\vec{a}$ wird durch eine Kombination aus dem gegeben Vektor  $\vec{b}$  und einem unbekannten Vektor  $\vec{x}$, welcher senkrecht zu $\vec{b}$ ist, dargestellt:

$\vec{a} = s \cdot \vec{b} + \vec{x}$

Beispiel

Hier klicken zum Ausklappen

Wie müssen wir $s$ und $\vec{x}$ wählen, sodass $\vec{b}$ und $\vec{x}$ orthogonal zueinander (bzw. senkrecht) stehen?

Zwei Vektoren heißen zueinander orthogonal, wenn sie einen rechten Winkel bilden und ihr Skalarprodukt gleich null ist.

Zwei Vektoren $\vec{b}$ und $\vec{x}$ sind orthogonal, wenn:

Merke

Hier klicken zum Ausklappen
High Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k

orthogonale Vektoren: $\vec{b} \cdot \vec{x} = |\vec{b}| \cdot |\vec{x}| \cdot \cos (90°) = 0$


Mit diesem Wissen können wir nun das Beispiel lösen:

(1) Die Gleichung  $\vec{a} = s \cdot \vec{b} + \vec{x}$  muss nach der unbekannten  $\vec{x}$  aufgelöst werden:

$\vec{x} =  \vec{a} - s \cdot \vec{b}$

(2) Diese Gleichung wird dann in die Gleichung $\vec{b} \cdot \vec{x} = 0$  eingesetzt:

$\vec{b} \cdot (\vec{a} - s \cdot \vec{b}) = 0$

(3) Auflösen nach $s$ ergibt:

$\vec{b} \cdot \vec{a} - s \cdot \vec{b} \cdot \vec{b} = 0 $

$\vec{b} \cdot \vec{a} = s \cdot \vec{b} \cdot \vec{b}$

$ s = \frac{\vec{b} \, \cdot \, \vec{a}}{\vec{b} \, \cdot \, \vec{b}}$

(4)Trail Laufschuhe Low Günstige Damen Shoppen Balance New Cw620f 08nOkwPX Einsetzen von $s$ in $\vec{x} = $  ergibt:

Merke

Hier klicken zum Ausklappen

orthogonale Zerlegung von $\vec{a}$ längs $\vec{b} \,$:
$\vec{x} =  \vec{a} - s \cdot \vec{b} = \vec{a} - \frac{\vec{b} \, \cdot \, \vec{a}}{\vec{b} \, \cdot \, \vec{b}} \cdot \vec{b}$


Die obige Gleichung entspricht der orthogonalen Zerlegung von $\vec{a}$ längs $\vec{b} \,$:

orthogonale Zerlegung

Die obige Grafik zeigt, dass der Vektor $\vec{a}$ durch den Vektor $\vec{b}$ und einem zu $\vec{b}$ senkrechten Vektor $\vec{x}$ dargestellt wird. Dabei muss der Vektor $\vec{b}$ mit der Zahl $s$ so mulitpliziert (skaliert) werden, dass sich dieser verkürzt. In diesem Fall liegt $s$ zwischen $0$ und $1$.

Anwendungsbeispiel: Zerlegung von Vektoren

Beispiel

Hier klicken zum Ausklappen

Gegeben seien die folgenden Vektoren: $\vec{a} = (0,4)$ und $\vec{b} = (3,3)$

Lösung der orthogonale Zerlegung:

 $\vec{a} = s \cdot \vec{b} + \vec{x}$

 $\left(\begin{array}{c} 0 \\ 4 \end{array}\right) = s \cdot \left( \begin{array}{c} 3 \\ 3 \end{array}\right)+ \vec{x}$

Bevor wir die obige Formel

$\vec{x} =  \vec{a} - \frac{\vec{b} \, \cdot \, \vec{a}}{\vec{b} \, \cdot \, \vec{b}} \cdot \vec{b}$

benutzen, berechnen wir die Skalarprodukte:

$\vec{b} \cdot \vec{a} = 3 \cdot 0 + 3 \cdot 4 = 12$

$\vec{b} \cdot \vec{b} = 3 \cdot 3 + 3 \cdot 3 = 18$

High Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k

Diese setzen wir anschließend in die Formel ein:

$\vec{x} =  (0,4) - \frac{12}{18} \cdot (3,3) = (0,4) - \frac{2}{3} \cdot (3,3) = (-2,2)$

Gegenrechnung

 $\vec{a} = s \cdot \vec{b} + \vec{x}$

 $\vec{a} = \frac{2}{3} \cdot (3,3) + (-2,2) = (0,4)$

Prüfung der Orthogonalität

$\vec{b} \cdot \vec{x} = 0$

$(3,3) \cdot (-2,2) = 3 \cdot -2 + 3 \cdot 2 = 0$

Video: Zerlegung von Vektoren

High Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k

Video: Zerlegung von Vektoren

Weitere Interessante Inhalte zum Thema

Teste dein Wissen!
High Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k
Bitte die Lücken im Text sinnvoll ausfüllen.
Zwei Vektoren heißen zueinander orthogonal bzw. senkrecht, wenn ihr Skalarprodukt gleich ist.
Goose 'francy' Sneakers High Top Farfetch Golden OPk8n0w
0/0
Lösen

Diese und viele weitere Aufgaben findest du in unseren interaktiven Online-Kursen. Registriere dich jetzt!

Weitere Aufgaben
Mit wenigen Klicks die passenden Aufgaben und Lösungen finden.

Das sagen unsere Teilnehmer über unsere Online-Kurse

Sioux Portofrei MokassinHerren Indacocognacblau Callimo XuPOikZ

Sehr übersichtlich, sehr gut erklärt, tolle kurz Filme.

Ein Kursnutzer am 05.05.2019

Hat mir bei der Klausurphase sehr viel geholfen. Ich habe sogar alle meine Klausuren bestanden. Vielen Dank für die tolle Arbeit. LG

Ein Kursnutzer am 01.03.2019

Das ist ein klasse Tool zum Lernen. Vielen Dank. Macht bitte gerne weiter. Ich werde euch weiterempfehlen

Ein Kursnutzer am 03.02.2019

Sehr gut strukturiert und einfach erklärt. Durch Videos nochmals deutlich veranschaulicht und kurz und knapp erklärt. SUPER!

Der Aufbau ist sehr gut

Ein Kursnutzer am 05.11.2018

Sehr hilfreich :)

Ein Kursnutzer am 10.10.2018
Für Qwx1aiWww Sneakers Damen Low Online Sneaker Vans hQrdCtsx

Bin froh euch zu haben :)

Ein Kursnutzer am 21.08.2018

Super ausführlich und verständlich !

Ein Kursnutzer am 08.02.2018

Sehr übersichtlich erklärt.

Ein Kursnutzer am 26.11.2017

Kurze und einprägsame Formulierungen. Dieser Kurs ersetzt manches Lehrbuch.

Hi Shop Top Sneaker Reebok Fit O Herren Weiß High Ex Mgpjdt v0mN8wOynP
Ein Kursnutzer am 03.08.2017

Prima finde ich die Erklärungen und die Wissenstests im Anschluss.

Ein Kursnutzer am 24.07.2017

Super Lernhilfe :D

Ein Kursnutzer am 31.01.2017

Gefällt mir

Ein Kursnutzer am 18.01.2017

Es macht spass hier zu lernen

Ein Kursnutzer am 11.11.2016

ALLES SUBBA

High Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k Ein Kursnutzer am 29.09.2016

einfach und trotzdem genau erklärt

Ein Kursnutzer am 29.08.2016

Sehr schön gegliedert und optimiert auf das Wichtigste. Dankeschön

Ein Kursnutzer am 29.10.2015

Hätte ich das nur während dem Abi damals gewusst :D Ich war damals aber auch faul, sehr gut das man hier an den Basics anfängt und Schritt für Schriit nochmal alles erklärt bekommt =)))

Ein Kursnutzer am 22.08.2014
Savings Low Top Spectacular Star Ball Sneakers Grey Golden Goose On 5qc4AjL3R

Themen unserer Kurse

  • Querdehnungen
  • Reelle Zahlen, rationale Funktion, Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
  • Stab, Spannung, Satz von Steiner für zusammengesetzte Flächen
  • Teilchen, Tangente, Torsion von dünnwandigen, geschlossenen Profile
  • Ungleichung, Uneigentliche Integrale, Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
  • Vektor, variable Kosten, Volumenänderungsarbeit
  • Wendepunkt, Winkel, Wöhler-Kurve und Smith-Diagramm
  • X-Y-Theorie nach Mc Gregor
  • Zugversuch, zwei Kräften, Zwei Kräfte mit einem gemeinsamen Angriffspunkt
  • Zugversuch, zwei Kräften, Zwei Kräfte mit einem gemeinsamen Angriffspunkt

Aktuelle Themen

Starten Sie jetzt durch!

High Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k

Lernen Sie jetzt mit unserem Komplettzugriff. Sie erhalten nicht nur Zugriff auf alle Kurse, sondern auch alle noch kommenden Aktualisierungen und Erweiterungen Machen Sie ingenieurkurse.de zu Ihrem Begleiter durch Studium oder Ausbildung!

Kontakt

Die Website und ihre Online-Kurse sind ein Angebot der
ingenieurkurse.de - examio GmbH
Anschrift: examio GmbH, Friedrichstraße 20, 57072 Siegen
E-Mail:
Telefon: +49 271 - 38 68 0170

Folgen Sie uns

Kontakt | Impressum | DatenschutzHigh Glitter Prom Pumps Yellow Platform PumpsSparkly HeelsBlack wZn0OPXN8k | Nutzungsbedingungen / AGB | Widerrufsrecht

4.54 / 5.00 aus 17 Kundenbewertungen | Trusted Shops